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3 Auctions and Mechanisms

Definition. An auction is mathematically pinned down as

A = 〈B, π, µ〉 ,

where

• B is the bidding set, i.e. the set of feasible bidding profiles: with bidders 1, 2
and 3, an element of B would be b = (b1,b2,b3). Bidding set and bidding profile
are analogous to strategy set and strategy profile, respectively, in the general
definition of a game.

• π is the allocation rule: for each bidder i, πi(b) is the probability that i wins the
auction given the bidding profile b.

• µ is the payment rule: µi(b) is i’s expected payment in the auction.

First principles. Let Ui(vi) the expected payoff from an individual with valuation vi .
It is given by the expression Ui(vi) = Pi(vi)vi −Qi(vi), where Pi(vi) is the probability
that an individual wins the auction as a function of their valuation vi , and Qi(vi) is the
expected payment by an individual with valuation vi . Notice the use of i-subscripts,
since bidders’ choices of bid may depend on individual preferences (e.g. risk aversion).

In what follows, we make the assumption of independent private valuations (IPV):
only i observes vi (i.e. valuations are private) and vi depends only on i, not on anything
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related to other bidders (i.e. they are independent). Other possible assumptions include
common or affiliated valuations, and will not be considered in this course.

Incentive-compatible direct auctions. Central to mechanism design is the notion of
incentive compatibility. (Remember that an auction is a mechanism, more specifically
a selling mechanism, and refer to section 3.3 for more general details.)

Suppose that you are a bidder in an auction; for ease of exposition, and without loss
of generality, consider a sealed-bid first-price auction. However, this auction operates
under somewhat unusual rules. There is a proxy bidder who announces a function βi(·)
for all bidders i ∈ N which will determine the value of each i’s bid:

1. The bidding functions {βi(·)}i∈N are revealed to all bidders

2. Instead of writing your bid in the sealed envelope, you report a valuation wi

3. The proxy bidder observes {wi}i∈N and computes the associated bidding profile
b̃ =

(
β1 (w1), . . ., βn(wn)

)
4. The auction takes place as usual with bidding profile b̃. π(̃b) and µ(̃b) are com-

puted—in the case of a sealed-bid first-price auction, the highest bid wins and
the buyer pays her bid.

Such an auction is said to be direct, insofar as bidders report directly a valuation instead
of their bid. However, it is not necessarily truthful: nothing stops you from misreport-
ing your type—indeed, it is often lucrative to con a mechanism by pretending to be
someone you aren’t! Fortunately, Myerson’s lemma provides necessary and sufficient
conditions for the case when it is not profitable to misreport your type:

Lemma (Myerson, 1981). A direct mechanism is incentive compatible if and only if,
for each i ∈ N ,

1. Pi(·) is nondecreasing

2. Ui(vi) =Ui(v)+

viˆ

v

Pi(x)dx

Proof. This lemma is twofold, therefore we have to show that (i) incentive compatibil-
ity implies points 1. and 2., and (ii) points 1. and 2. imply incentive compatibility.

In order to prove (i), let’s begin by stating what it means for a direct auction to be
incentive compatible. Suppose individual i has valuation vi; she can misreport her
valuation by stating wi > vi . (This is without loss of generality as the proof with wi < vi
is the mirror image.) Incentive compatibility requires that she cannot make herself
better-off by misreporting. Recall that when i’s valuation is v, her payoff from reporting
x is Ui(x,v) = Pi(x)v −Qi(x). The incentive-compatibility constraint on an individual
with valuation vi is therefore:
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Ui(vi) ≥ Pi(wi)vi −Qi(wi); adding and substracting Pi(wi)wi , this becomes

Ui(vi) ≥ Pi(wi)wi + Pi(wi)(vi −wi) −Qi(wi) where we recognise Ui(wi) = Pi(wi)wi −

Qi(wi) which would be i’s payoff from bidding wi if her true valuation was wi . There-
fore,

Ui(vi) ≥ Ui(wi)+P(wi)(vi −wi) (1)

Similarly, starting from the incentive-compatibility constraint on an individual with
valuation wi , Ui(wi) ≥ Pi(vi)wi −Qi(vi), we can obtain the symmetrical result

Ui(wi) ≥ Ui(vi)+P(vi)(wi − vi) (2)

Combining (1) and (2), we can rearrange to

Pi(wi) ≥
Ui(wi)−Ui(vi)

wi − vi
≥ Pi(vi)

It is immediate that Pi(wi) ≥ Pi(vi) ∀wi > vi , which proves 1. Now, let’s see what
happens to this inequality as wi → vi . First, the term between the two inequalities is of
the form

f (x+ h)− f (x)
h

,

where h := wi−vi and x := vi . As h → 0, this converges to f ′(x). (This is the definition
of a derivative.) Therefore, the middle term converges to U ′

i (vi) as wi → vi . Second,
notice that Pi(wi) → Pi(vi), so the middle term is “squeezed” between an upper bound
and a lower bound which converge to one another. This means that the inequalities will
hold with equality, and yield

U ′
i (vi) = Pi(vi)

Finally, in order to recover an expression for Ui(vi), we use the

Theorem (Fundamental Theorem of Calculus). If the function F is continuously dif-
ferentiable over [a−ε,b+ε] for any arbitrarily small, positive ε, and if F differentiates
to f , then

´ b
a f (x)dx = F(b)−F(a).

To apply this theorem here, we need to assume that Ui(vi) is continuously differentiable
over [v, v̄], which is sensible. However, we also require that vi ∈ (v, v̄)—that is, our re-
sult will not hold to individuals with either the highest or the lowest possible valuation.
(This is not an issue as we have other ways to compute the payoff for such individuals.
For the sake of this proof, however, we gloss over this technicality.) Under the above
conditions, the FTC applies and

Ui(vi)−Ui(v) =

ˆ vi

v

U ′
i (x)dx
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⇔ Ui(vi) =

ˆ vi

v

Pi(x)dx+Ui(v),

which proves 2. �

Solving the four standard auctions (and more!)

First, notice that the sealed-bid first-price and the descending auctions are strategically
equivalent. This means that you can think of them as the exact same game, where the
same strategies will be available to each player and therefore the outcome will also
be the same. Here, the winner pays her bid and no additional information is made
available throughout the course of the auction.

The sealed-bid second-price and the ascending auctions are also equivalent, but to a
lesser extent and only with independent private valuations. To clarify the difference,
note that unlike in any of the other auction formats, the ascending auction forces bid-
ders to release additional information as the game unfolds; for instance, a strategy
available to a bidder in an ascending auction could be “drop out of the auction when
half the other bidders dropped out, even if my valuation hasn’t been reached yet.” Such
a strategy is not available to a bidder in the sealed-bid second-price auction; therefore,
these auctions are not strategically equivalent. However, in effect the highest bidder
pays the second-highest bidder’s bid, so these two auctions will be outcome equiva-
lent, a weaker equivalence concept.

Now, a solution concept for an auction means the exact same thing that for any other
game. We seek to predict the outcome of the auction in terms of players’ strategies
(here, bids); these strategies are themselves contingent on each player’s type (here,
valuation). Here, bidder i’s equilibrium bid is denoted by the expression βi(vi).

In fact, auctions with independent private valuations yield a symmetric equilibrium—that
is, the function βi(·) is the same for each i. This means that once the auction format is
chosen, we can find a function β(vi) that will determine bidder i’s equilibrium bid.

Sealed-bid second-price and ascending auctions

For each player, bidding their own valuation is a dominant strategy. There is therefore
a dominant-strategy equilibrium in which β(vi) = vi for all i.

Sealed-bid first-price and descending auctions

Here, there is no dominant-strategy equilibrium. Therefore, the equilibrium concept
that applies here is a Nash equilibrium, more specifically Bayes-Nash as an auction is a
Bayesian games (since players have types/valuations). The equilibrium combines what
I call the “first-principles” expression (FP) and Myerson’s lemma (ML), which holds in
equilibrium of any incentive-compatible mechanism by the Revelation Principle (see
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the Krishna textbook from the reading list). For these specific auctions, FP can be
rewritten as

Ui(vi) = Pi(vi)vi −Qi(vi) = Pi(vi)vi −Pi(vi)β(vi) = [F(vi)]nvi −[F(vi)]nβ(vi)

where F(k) is the distribution of valuations among the bidders. Similarly, ML becomes

Ui(vi) =Ui(v)+

viˆ

v

Pi(x)dx = 0+
viˆ

v

[F(x)]ndx

where Ui(v) = 0: a bidder with the lowest possible valuation can earn no utility from
the auction. Combining FP and ML and rearranging yields an expression for the BNE
bid β(vi):

[F(vi)]nvi −[F(vi)]nβ(vi) =

viˆ

v

[F(x)]ndx

⇔ β(vi) = vi −

´ vi
v [F(x)]ndx

[F(vi)]n
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